作为现代电子工业的基石,半导体电子器件的基元就是实现半导体二极管效应的P-N结。半导体P-N结的最大特性就是其单向导电性。在正向偏置时,P-N结处于导通状态,允许电流通过;在反向偏置时,P-N结处于截止状态,电流无法通过。半导体电子器件就是利用这样的特性实现逻辑运算。与半导体材料类似,具有宏观量子现象的超导体也在量子电子学中起到不可替代的作用,比如超导量子干涉仪等。那么,一个问题自然而生,我们能否在超导电流中实现二极管效应?由于超导电流的零电阻特性,这个问题的答案似乎是否定的。
2007年,类比于半导体P-N结,胡江平研究员(中科院物理研究所)与其合作者戴希教授(香港科大)、吴从军教授(西湖大学)首先在理论上提出利用电子、空穴掺杂超导体构造的约瑟夫森结来实现超导二极管效应,也称为约瑟夫森二极管[1]。但是,实验上实现超导二极管极具挑战。直到2020年,日本京都大学Teruo Ono研究组在Nb/V/Ta超晶格超导体中通过外加磁场首次实现超导二极管现象[2]。2022年,荷兰代尔夫特理工大学Mazhar Ali研究组在NbSe2/Nb3Br8/NbSe2约瑟夫森结中首次实现了无外场的约瑟夫森二极管效应[3]。这些实验结果引起了广泛关注,成为近期超导电子学中的热点问题 [4]。
具体而言,如图1a所示,超导二极管效应的基本特征就是当电流向右传导时表现出无耗散的超导电流;当电流向左传导时表现出耗散的普通电流。同样约瑟夫森二极管效应也表现出同样的非倒易传导,如图1b所示。超导二极管的电流-电压特征曲线如图1c所示, 系统存在一个正向临界电流Ic+。当正向电流IIc+时,系统表现出V≠0耗散的正常电阻。同样,在反向电流中,存在另外一个临界电流-Ic-。Ic+≠Ic-就是二极管的特性现象。如果施加一个幅度I0电流方波(Ic-